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S O M E  S P E C I A L  F E A T U R E S  O F  T H E R M O C O N V E C T I V E  
M O T I O N  I N  M U L T I L A Y E R  L I Q U I D S  

V. M. Shevtsova and A. E. Indeikina UDC 536.252:532.61 

Thermocapillary convection is considered in multilayer systems of liquids at whose interfaces surface tension 
forces act. It is assumed that the liquids are immiscible and a linear temperature distribution is maintained 

at the lower solid boundary. 

At present, in modeling convective phenomena one-layer liquids are usually considered. Thermal convection 

laws in multilayer liquid systems are of interest for understanding processes of fluid dynamics and heat and mass 

transfer when creating new materials. 

We consider motion in a system consisting of N flat layers of viscous incompressible liquids with a thickness 

Di, i = 1, N, confined between solid surfaces. The index i = 1 pertains to the lower layer. It is assumed that the liquids 

are immiscible and their density decreases with the layer number: pi+l< Pi, i = 1, N. At the lower solid boundary, a 

constant linear temperature distribution is maintained. The heat conduction of the liquids causes a nonuniform 

temperature distribution at the interfaces. As a result, tangential thermocapillary stresses develop, thus causing 

motion in the system. It is assumed that all surface tension coefficients depend on the temperature in the following 

fashion [1 ]: 

(h = (r0i + 1/2~i (Ti - -  To) s, cr0i = eonst, ~ = const, i = 1, N - -  1. 

Here To is the temperature corresponding to the extremal surface tension coefficient. Steady-state motion is 

considered in a multilayer liquid. The geometry of the problem for a three-layer liquid system is shown in Fig. 1. 

With ordinary simplifying assumptions, the problem may be mathematically represented by Navier-Stokes, 

heat conduction, and continuity equations: 

aUi aUi 1 tgP~ -t'- ~iv~U~, 
a--C= p, 

av~ av~ _. 1 aP~ (1) 
ui ~ + vi ar  ol a---~ + ,~iv%, 

au~ + av~ =o ,  ui aTi aT~ 
�9 a - f -  0--7- - -gff-  + o, = %iv~Ti, i =  1, N. 

At the solid boundaries the conditions of liquid adhesion are prescribed, at the lower boundary a constant linear 

temperature distribution is maintained, and the upper boundary is heat insulated: 

UI = vx = Q, Tt = To + AX, 

Ulv = v~r = 0, OTN/OY = 0, 

i 
At the liquid interfaces Y = Hi = E Dk we prescribe: 

k = l  

temperature and velocity continuity 

Y = O; 

Y = H .  
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Fig. 1. Geometry of the problem for a three-layer liquid system. 

U~=Ui+z ,  Ti-----Tt+g 

impermeability condition 

heat flux continuity 

vt ---= vt+l = 0; 

kt oT------L = kt+~ OTi+t . 
OY OY 

balance of viscous forces 

- -  OOi+l dtri OTt tit OUt __ rli+l - -  + - -  
OY OY . dTf OX 

As shown in [2, 3 ], the assumption of a flat surface is approximately fulfilled for heavy liquids and at a 

sufficiently high thermocapillary pressure, i.e., at large a0i. 
We introduce dimensionless parameters and variables 

X = 
X Y Dt H~ 
H ,  V= _-::-,~ ctt --~-, h i=  , 

H 

Pri = v i / ~ ( i  is the Prandtl number. We seek a self-similar solution to the problem in the form 

U~ = ~ x~'~ ( y ) ,  v t  = - -  ~ r (y ) ,  
H H 

Tt = To + AHxOt (y), 

1 v , ~  (;~ix ~ + h (v)) ,  Pt : Poi 2 . H z 

(2) 

where P 0 1  = P(0, 0) = const and P 0 i  = P(0, h i) = const, i -- 2, N. 
A self-similar solution to the problem on motion in a single liquid layer is found in [3, 4 ]. To determine new 

unknown functions ~i (Y), 0i (Y), fi (Y) and constant hi, we obtain from (1)- (2) the following two-point boundary-value 
problem for a nonlinear system of ordinary differential equations: 

r + r  (r + x, = o, f 2 (,; + , , ,3 ,  (a) 

0 ;  - -  P r ,  (@~0,  - -  @ , 0 , )  = 0 
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with the following conditions at the bottom y = 0: 

r (o) = ,1  (o) = h (o) = o,  o~ (o) = 1. 

At the upper boundary y = 1: 

r (1) = ap~V (1) = tN (1) = 0~(1) -- O; (4) 

at the interfaces y = hi; i = 1, N-l :  

0i (hi) = 0 ' = " = ~+1 ~hl), 0; (hi) k~+~0~+~ (h~), f~(h~) 0, 

r (hl) = r (h3 = 0, *~ (hi) = i+~r (hi), 

r (h~) - -  nt+~ i+J~*~+l (h~) = m~0Y (h~). 

Here and henceforth Vik =vi/Vk, r]i k -- r]i/r]k , kik = ki/kk, mi = ~iA2H3(r]ivi) is the Marangoni number at the i-th interface 

of liquids. 

In order to elucidate characteristic special features of a thermocapillary flow, we obtain an approximate 

analytical solution for each layer at small Marangoni numbers m i assuming that all Prandtl  numbers Pr  i are of order 

unity. 

There are N-1 Marangoni numbers in the problem, and we may perform expansion in terms of any of them. 

For definiteness, we shall employ ml assuming that all Marangoni numbers are of the same order. 

When mi = 0, i = 1, N- l ,  the problem has the solution ~ i  = fi =~-i = 0 ,  0 i = 1, which corresponds to a fluid at 

rest with a uniform temperature distribution with respect to height. 

When I mi I < 1, the solution will be constructed by the perturbation method in the form 

1,17,2.1,( 2 ) ,~ = m ~ , i '  + l w  + . . . .  ti = ' m d [  1~ + m~ t~ ~) + . . . .  
(5) 

= o = _ ~ ( I )  m~O~ 2~ , = 1 ,  N. X~ mx.~.~l) + mi X~2) + . . . .  10~ 1 + ,tx'.,t + + . . .  i 

Substituting (5) into (3), (4) and neglecting quadratic terms in mi, we arrive at 
t i p  , I t  v! �9 

r + ~ , ~ = 0 ,  t ;  2 , ( ,  0 1 = P r i * i .  (6) 

To avoid confusion with the layer number, hereinafter the superscript "unity" refering to the first term in 

the expansion is omitted. 

The boundary conditions are as follows: 

,~(0) = ,1 (0) ---- ~ ( 0 ) =  0~(0)---- 0, *N (1) = *~v (!) ----IN (1)---- 0 N ( 1 ) =  0. (7) 

At the interfaces y = hi: 

t �9 

r (hi) = r  (hi) = O, ,~ (hi) = vi+l~*i+l (h~), 
s r 

0~ (h3 = 0~+i (h~). 0i (h~) =/~+~i0,.+l,(h~), 

, ;  (h,)-- ~,+,i~'~+~,r (h~)= m ,  = *'~____a__~ , t~(h~) ='0, 
/7l I ~ i l ~ i l  

where a l l  ---- a i / c t  1. 

Having solved linear boundary-value problem (6) with conditions (7), we find the eigenvalues 2i and,  

correspondingly, the first terms in expansion (5). 

The solution to the problem (6)-(7), has the form 

r  = - -  k - L  (Y  - -  h ~ _ ~ ) ( y  - -  h i ) ( Y  - -  a i ) ,  (8) 
6 
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[, = 2tpi + ~ d, (h, .-- a,), i :/= 1, [1 = - -  ~.lY (3y - -  2/3hx), 

Oi = - -  P r i n t  (y  _ h t _ l ) 2  (3 (y  - -  hi._~) 2 - -  4 (y - -  hi_~)(ai + di - -  hi_~),  + 
72 

i - I  P r k ~  
+ 6di (ai --.hi-O) --  ~ 72 

h=l  
- -  dh a (2 (ak - -  hh-l)  - -dk) .  

Here the designations h0 = 0, hN -- 1 are introduced; al = h0 = 0, aN = hN -- 1 for a system consisting of any number 

of layers. Henceforth a three-layer liquid, N -- 3, with mainly be considered. In this case 

3 
~ . . . . .  (a,~d~, - -  2 (d~ + n.,~)), 

d~? 

d~v21"~ 

~.3-=-3---~-(dl~-2tx~.l(d,2+rh2), a i - = d l ( l q - -  dl ,  ~'t ). 
davaf~ %1 .L.2 

(9) 

Herey  = r]21(d12(d32 4. 2r]32 ) + 2(d32 + r132)(d12 4- 2t/12)), dik = d i / d k ,  i, k = 1, 3. 
In the limit Y32 ~ 0, we obtain from (8), (9) the solutions for a two-layer liquid system with a free surface 

at the upper boundary,  and at d32 -~ 0 for motion of a two-layer liquid in a gap between plates [2 ]. As in the case of 

a two-layer liquid with a free surface at the upper boundary, three modes of steady-state motion exist for a three-layer 

system, depending on the ratios between the parameters of the liquids: 

the first 
1 

t~2t~  ----- t~*; 
2 (1 + rhddl~ ) 

the second 

r ~ a~l ~ ' 2  (1 q- r132/ds~) = so; 

the third 

6r ~ s ~ 

Figures 2 and 3 show streamlines for different flow modes. For a21 pertaining to the first mode, the direction of 

circulation in the system is determined by the Marangoni force at the interface between the 1st and 2rid liquids, with 

the most pronounced motion being in the lower layer (Fig. 2a). 

The second mode is characterized by competition of the motions initiated by thermocapillary forces at the 

liquid interfaces. For small a21 , one more vortex with an opposite direction of circulation emerges in the 2nd layer 

near the upper boundary,  and the motion in the upper layer is reversed (Fig. 2c). With further increase in a21, the 

vortex dimensions and intensity increase, a cell at the interface between the 1 st and 2nd liquids becomes compressed, 

the motion in it slows down and, as a consequence, the circulation rate in the lower layer decreases (Fig. 2d, e). 

In the third mode, the motion is determined by the Marangoni force at the upper interface of the liquids. 

The flow pattern is analogous to that in the first mode but with reversed circulation in all vortices (Fig. 3a). With an 

increase in a21, the intensity of the motion in the 3rd layer (at the chosen values of liquid parameters) grows most 

quickly. At a21 = a* and a21 = a ~ the flow modes change. At a21 = a* the upper layer of the liquid is motionless (Fig. 

2b), and at ct21 --- ct 0 the lower layer is at rest (Fig. 2f) in first order in m I. The flow pattern in two moving layers is 

the same as in the case of a two-layer liquid moving in a gap between plates. Unlike the motion in a two-layer system 

with a free surface [2 ], the ratios of the viscosities and thicknesses of the layers also affect the change in flow modes. 

For the case of three liquids, one may suppress convection in the upper layer for a21 < 0.5 by a proper choice of d12, 
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Fig. 2. Streamlines for different modes of the flow (dr = d2  = d3 = 1/3; r]32 "= 0 . 5 ,  

S *  ~ /'/12 = 3 ) :  a) first mode, a21 = 0; b) s21 = 0.125; c, d, e) second mode, s21 
0.25, 0.5, 1; f) s21 = s ~ = 3. The streamline values are given in units of 10-2mlVl. 
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Fig. 3. Streamlines for different thicknesses of the layers (/]32 = 0 . 5 ;  1712 = 3; s21 
= 5 ) :  a) third mode, dl = d2 = d3 = 1/3; b) dl = 1/3,  d2 = 1/2,  d3 = 1/6; a21 = 5 = 
S 0 . 

and in the lower layer  for a2z > 2 by changing d32 (Fig. 3a, b). For 0.5 < a21 < 2 a change in thickness ratios of the 

layers affects only the position of the interface of vortices in the second layer. 

Figure 4 shows the Nusselt number  distribution over the depth in units of AHml Prl for different ratios of 

the thermal diffusivitiesxz2 and%13 in the cases a21 --a* (curves 1, 2) and S21 = s  0 ( c u r v e s  3 ,  4 ) .  The  process of heat 

transfer by vortices proceeds similarly to the case of a two-layer system with a free surface [2 ]. We note that at s21 

-- s* the distribution Nu(y)  in the third layer is uniform, and the value of Nu is determined by the value at the 

interface with the second liquid. 

A comparison of curves 1 and 3 (Fig. 4) shows that convection increases the deviation of the temperature  

from a linear profile. With increase in the thermal diffusivity of the i-th liquid (decrease inz l i ) ,  the effect of the heat 

conduction is enhanced,  and the temperature profile is smoothed (curves 2 and 1, 3 and 4 in Fig. 4). 

Since it is found that  at s21 = a *  the upper layer  and at a21 = or 0 the lower layer  are at rest  in first order  in 

m 1, it is of interest to elucidate the character  of the motion in these layers at higher orders of expansion in ml.  
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Fig. 4. Nusselt number  distribution over the depth in units of AHmlPr l  for di 
= d2=da  = 1/3,  r/32 = 0.5, ~D2=3: 1) a21 = t x *  = 0.125,Z12 = 0.4,ZIa = 0.2; 2) a21 
= a* = 0.125,Z12 = 2, ~(13 = 4; 3) ~ = a 0  = 3 ,  X12 = 0.2, ~(13 = 0.4; 4) ct21 = a 0 = 

3,Z12 = 0.4,X13 =0.2.  

For the sake of simplicity, the limiting case of a two-layer system with a free surface(r/32 = 0, cz21 = a 0 = 2) 

was investigated. In second order  in ml,  we obtain for the lower liquid 

)~2) = _ d 22 (Pr~ + 47/140) , ~2~ = _ ~Y~'~2) (Y _ hx), 
2 

d121]SlVSl (311-21 "~  4d21) 6 

t~) = _ Z~z)g (g _ 2/3h~), O~ 2~ = (t0) 
72 

Pr~ d 4 ~ ( d l  -[- 6) 

- -  ksi 336 (TlSl~21) ~ g" 

The dependences for the stream function and the pressure are of the same form as in the case of the first order  in 

ml; however, now the velocity field depends on the deviation of the system temperature from a l inear profile, and 

the Prandtl  number  enters 2t 2). Since the temperature of the lower layer does not change in first order  in ml (curves 

3, 4 in Fig. 4), 2t 2) and, consequently, the velocity do not depend on Prl .  

In the second order,  the temperature of the lower liquid changes over the depth due to both convective heat 

t ransfer  inside the layer  and heat exchange with the second liquid. Since the obtained expressions (10) have no 

divergent t e r m s ,  ,/pt 1) = 0 at a21 = a 0, and it follows from (5) that ~ 1  = m~v/t 2) + O(mla), ~2 = m l ~  1) + O(m~), etc., 

then for sufficiently small ml the motion in the lower layer is much weaker than that in the upper layer. 

At a21 = a ~ the deviation of the temperature of the second layer from a l inear profile is the negative value 

of the order  of ml (curves 3, 4 in Fig. 4); therefore,  thermocapillary forces on the surface of the second liquid weaken 

and the intensity of the upper vortex in the second layer at a21 = a 0 becomes insufficient to suppress the vortex at 

the interface and the motion in the lower liquid (see Fig. 2e, f). This means that  the lower liquid will be motionless 

at the higher value a21 = a ~ + e ~ where e ~ - ml ,  e 0 > 0. The  obtained solution (10) remains correct even at values of 

a21 differing from a ~ by a value of the order  of m]. Then  the value of a21, at which no motion is observed in the lower 

layer,  may be evaluated according to (5) as 

~, = rn l~ "  + r n ~  2) + 0 (m~). 

Using (8) and (10), we obtain from the condition ~'1 = 0 

+ + 

Hence, from (9) at Ya2 = 0, a21 = 2 + e ~ and (10) we find 
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Fig. 5. Schematic of velocity profiles in multilayer liquids: a, b) N -- 3; c, d, e) N 
=4; f) N=5 .  

e0 = mldg (Pr~ q- 47/140) 
3~hl%x + 0 (m~). 

Consideration of the case a21 -- a* in second order in ml yields a similar result, viz., the absence of divergence; the 
sign of e* depends on the ration between Prl and Pr2. 

Analysis of the obtained solutions (8) and the special features of the motion in two- and three-layer liquid 

systems leads to the following conclusions concerning the motion in multilayer systems with N >__ 3. 

1. The flow possesses bilateral symmetry relative to the plane x = 0. Next, we shall deal with the region x > 0. 

2. In liquid layers adjacent to solid surfaces only monovortex motion may take place. In inner layers, two 

vortices with opposite directions of circulation as well as one vortex may exist. The flow pattern in a system with no 

convection in one of the layers is identical to the situation where the boundaries of a motionless layer are solid 

surfaces. Therefore, if this motion is to be investigated, one may consider one or several independent systems with 

a smaller number of layers, taking into account the condition of motionlessness of the i-th layer. 

3. In the absence of motion in the i-th layer, for the inner layers from the third to the N-2-th one we may 
write 

a i . - l =  h i - l ,  ~ i - i  = - -  

al+l = hi, L~+I = 

3cq_l,1 .. (11) 
~li-1,1%-I, ldt-I 

3~i. i (12) 
rlt+l, iv~-~i, ldl+l 

Relation (11) also holds when i -- N, and (12) when i -- 1. Convective motion in the inner layer when 
ai ~ 0, ai-1 ~ 0 may be suppressed when N >__ 5. 

4. Two neighboring layers may be motionless only in the absence of thermocapillary forces at their interface, 
ct  i = 0 .  
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5. The second or N- l - th  layer may be at rest only together with the first or N-th layer. 

6. If all the Marangoni numbers differ from zero, convection may be suppressed simultaneously in k _< [(N 

+ 2)/3 ] (for N _> 3) layers. In this case a layer at rest is adjacent to systems consisting of two or more moving layers, 

or one of the boundaries may be a solid surface. 
Figure 5 schematically shows velocity profiles in a system consisting of three, four, or five liquid layers in 

cases where one of the layers is at rest. 

N O T A T I O N  

H, thickness of the multilayer system; N, number of layers in the system; X, Y, x, y, dimensional and 

dimensionless coordinates; Di ,  di ,  dimensional and dimensionless thickness of the i-th liquid layer; Ui, vi, horizontal 

and vertical velocities; Ti, temperature; Pi ,  pressure; Pi, density; a i ( T i )  , surface tension coefficient at the i-th interface 
of the liquids; a0i, ai, T0i, coefficients of the temperature dependence ai(Ti); A, prescribed temperature gradient 
along the lower solid surface; r/i, vi, ki,  Zi, coefficients of dynamic and kinematic viscosity, thermal conductivity, and 

thermal diffusivity, respectively; ~]ik ---- g]i/~]k, Vik = Vi/Vk, kik = ki/kk, Zik = Zi/Zk, a i k  = ai/ak, dik = di/dk, the ratio of 
the corresponding quantities of the i-th and k-th layers; Pri = v i / Z i ,  Prandtl number; a 0, a*, values of aik at which a 
change in the modes of stationary liquid motion proceeds. Subscripts: i = 1 pertains to the lower liquid; i -- N pertains 
to the upper liquid. 
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